Fast and Accurate Estimation of Non-Nested Binomial Hierarchical Models Using Variational Inference

Max Goplerud

University of Pittsburgh

2020 Annual Meeting of the Society for Political Methodology (PolMeth XXXVII)

• Data in political science is messy

- Data in political science is messy
 - Correlated across observations (voters within constituencies)

- Data in political science is messy
 - Correlated across observations (voters within constituencies)
 - Nested observations (respondents in clusters in countries)

- Data in political science is messy
 - Correlated across observations (voters within constituencies)
 - Nested observations (respondents in clusters in countries)
 - Effects vary across space and time (effect of income over time)

- Data in political science is messy
 - Correlated across observations (voters within constituencies)
 - Nested observations (respondents in clusters in countries)
 - Effects vary across space and time (effect of income over time)
 - Non-linear outcomes (binary, count, multinomial)

- Data in political science is messy
 - Correlated across observations (voters within constituencies)
 - Nested observations (respondents in clusters in countries)
 - Effects vary across space and time (effect of income over time)
 - Non-linear outcomes (binary, count, multinomial)
- Standard models ("i.i.d."; linear outcomes) are often unsuitable

- Data in political science is messy
 - Correlated across observations (voters within constituencies)
 - Nested observations (respondents in clusters in countries)
 - Effects vary across space and time (effect of income over time)
 - Non-linear outcomes (binary, count, multinomial)
- Standard models ("i.i.d."; linear outcomes) are often unsuitable
- What to do?

- Data in political science is messy
 - Correlated across observations (voters within constituencies)
 - Nested observations (respondents in clusters in countries)
 - Effects vary across space and time (effect of income over time)
 - Non-linear outcomes (binary, count, multinomial)
- Standard models ("i.i.d."; linear outcomes) are often unsuitable
- What to do? Hierarchical models, random effects, mixed effects, multilevel models, ...

- Data in political science is messy
 - Correlated across observations (voters within constituencies)
 - Nested observations (respondents in clusters in countries)
 - Effects vary across space and time (effect of income over time)
 - Non-linear outcomes (binary, count, multinomial)
- Standard models ("i.i.d."; linear outcomes) are often unsuitable
- What to do? Hierarchical models, random effects, mixed effects, multilevel models, ...
- Popular in political science and use is going ↑↑

• Inference is *tough*:

- Inference is *tough*:
 - Often requires evaluating many, intractable, integrals

- Inference is tough:
 - Often requires evaluating many, intractable, integrals
 - Even worse when effects are "non-nested" (e.g. time + country)

- Inference is tough:
 - Often requires evaluating many, intractable, integrals
 - Even worse when effects are "non-nested" (e.g. time + country)
- Estimation is thus usually rather slow

- Inference is tough:
 - Often requires evaluating many, intractable, integrals
 - Even worse when effects are "non-nested" (e.g. time + country)
- Estimation is thus usually rather slow
 - Usually need to fit many models for hypothesis testing, robustness tests, model comparison, cross-validation...

- Inference is tough:
 - Often requires evaluating many, intractable, integrals
 - Even worse when effects are "non-nested" (e.g. time + country)
- Estimation is thus usually rather slow
 - Usually need to fit many models for hypothesis testing, robustness tests, model comparison, cross-validation...
- For applied researchers, hierarchical models can be a pain to use.

- Inference is tough:
 - Often requires evaluating many, intractable, integrals
 - Even worse when effects are "non-nested" (e.g. time + country)
- Estimation is thus usually rather slow
 - Usually need to fit many models for hypothesis testing, robustness tests, model comparison, cross-validation...
- For applied researchers, hierarchical models can be a pain to use.
- Motivation: Can we estimate these models *differently*, gain speed, and maintain accuracy?

Bayesian Laplace Variational Approximation Bayes

	Bayesian	Laplace Approximation	Variational Bayes	
Software	STAN	glmer		

	Bayesian	Laplace Approximation	Variational Bayes	
Software	STAN	glmer		
Speed				
Accuracy				
Quantifying Uncertainty				

	Bayesian	Laplace Approximation	Variational Bayes	
Software	STAN	glmer		
Speed	_			
Accuracy	++			
Quantifying Uncertainty	++			

	Bayesian	Laplace Approximation	Variational Bayes	
Software	STAN	glmer		
Speed	_	?		
Accuracy	++	+		
Quantifying Uncertainty	++	?		

	Bayesian	Laplace Approximation	Variational Bayes	
Software	STAN	glmer		
Speed	_	?	++	
Accuracy	++	+	_	
Quantifying Uncertainty	++	?	_	

	Bayesian	Laplace Approximation	Variational Bayes	
Software	STAN	glmer		
Speed	_	?	++	
Accuracy	++	+	_	
Quantifying Uncertainty	++	?	_	

Goal for Today: Keep speed but maintain quality

	Bayesian	Laplace Approximation	Variational Bayes	MAVB
Software	STAN	glmer		vglmer
Speed	_	?	++	
Accuracy	++	+	_	
Quantifying Uncertainty	++	?	_	

- Goal for Today: Keep speed but maintain quality
- Marginally Augmented Variational Bayes

	Bayesian	Laplace Approximation	Variational Bayes	MA VB	
Software	STAN	glmer		vglmer	
Speed	_	?	++	++	
Accuracy	++	+	_	+	
Quantifying Uncertainty	++	?	_	_	

- Goal for Today: Keep speed but maintain quality
- Marginally Augmented Variational Bayes
 - Variational Bayes: New application of data augmentation to (non-linear) hierarchical models (Polson, Scott, and Windle 2013)

	Bayesian	Laplace Approximation	Variational Bayes	MAVB	
Software	STAN	glmer		vglmer	
Speed	_	?	++	++	
Accuracy	++	+	_	+	
Quantifying Uncertainty	++	?	_	+	

- Goal for Today: Keep speed but maintain quality
- Marginally Augmented Variational Bayes
 - Variational Bayes: New application of data augmentation to (non-linear) hierarchical models (Polson, Scott, and Windle 2013)
 - Marginally Augmented: Post-processing step to improve uncertainty

	Bayesian	Laplace Approximation	Variational Bayes	MAVB
Software	STAN	glmer		vglmer
Speed	_	?	++	++
Accuracy	++	+	_	+
Quantifying Uncertainty	++	?		+

- Goal for Today: Keep speed but maintain quality
- Marginally Augmented Variational Bayes
 - Variational Bayes: New application of data augmentation to (non-linear) hierarchical models (Polson, Scott, and Windle 2013)
 - Marginally Augmented: Post-processing step to improve uncertainty
- Focus on logistic hierarchical models in paper
 - R package includes count and (soon!) multinomial and linear

Overview of Presentation

Overview of Presentation

- Motivating Example: Deep MRP (Ghitza and Gelman 2013)
- Outlining MAVB

Advice for MRP Practitioners: How Deep is Deep Enough?

Motivating Example: Ghitza and Gelman (2013)

Explain turnout differentials by state/age/ethnicity/income

Motivating Example: Ghitza and Gelman (2013)

- Explain turnout differentials by state/age/ethnicity/income
 - $\bullet \ \, \textbf{But} \colon \mathsf{Only} \,\, \mathsf{a} \,\, \mathsf{few} \,\, \mathsf{observations} \,\, \mathsf{per} \,\, \mathsf{cell} \, \to \, \mathsf{MRP!}$

Motivating Example: Ghitza and Gelman (2013)

- Explain turnout differentials by state/age/ethnicity/income
 - But: Only a few observations per cell → MRP!
 - Fit a multilevel regression on the survey and post-stratify

- Explain turnout differentials by state/age/ethnicity/income
 - But: Only a few observations per cell → MRP!
 - Fit a multilevel regression on the survey and post-stratify
 - Key contribution: Add "deep" interactions

- Explain turnout differentials by state/age/ethnicity/income
 - But: Only a few observations per cell → MRP!
 - Fit a multilevel regression on the survey and post-stratify
 - Key contribution: Add "deep" interactions
- Preferred model has 18 random effects and nearly 4,000 parameters!

- Explain turnout differentials by state/age/ethnicity/income
 - But: Only a few observations per cell → MRP!
 - Fit a multilevel regression on the survey and post-stratify
 - Key contribution: Add "deep" interactions
- Preferred model has 18 random effects and nearly 4,000 parameters!
 - Theory: Why use 18? Why not 4?

- Explain turnout differentials by state/age/ethnicity/income
 - But: Only a few observations per cell → MRP!
 - Fit a multilevel regression on the survey and post-stratify
 - Key contribution: Add "deep" interactions
- Preferred model has 18 random effects and nearly 4,000 parameters!
 - Theory: Why use 18? Why not 8 or 12?

- Explain turnout differentials by state/age/ethnicity/income
 - But: Only a few observations per cell → MRP!
 - Fit a multilevel regression on the survey and post-stratify
 - Key contribution: Add "deep" interactions
- Preferred model has 18 random effects and nearly 4,000 parameters!
 - Theory: Why use 18? Why not 8 or 12? Overfitting?

- Explain turnout differentials by state/age/ethnicity/income
 - But: Only a few observations per cell → MRP!
 - Fit a multilevel regression on the survey and post-stratify
 - Key contribution: Add "deep" interactions
- Preferred model has 18 random effects and nearly 4,000 parameters!
 - Theory: Why use 18? Why not 8 or 12? Overfitting?
 - Computation: Expensive to fit the "deep" model (prohibitive for CV)

- Explain turnout differentials by state/age/ethnicity/income
 - But: Only a few observations per cell → MRP!
 - Fit a multilevel regression on the survey and post-stratify
 - Key contribution: Add "deep" interactions
- Preferred model has 18 random effects and nearly 4,000 parameters!
 - Theory: Why use 18? Why not 8 or 12? Overfitting?
 - Computation: Expensive to fit the "deep" model (prohibitive for CV)
- Consider a spectrum of nine models:

- Explain turnout differentials by state/age/ethnicity/income
 - But: Only a few observations per cell → MRP!
 - Fit a multilevel regression on the survey and post-stratify
 - Key contribution: Add "deep" interactions
- Preferred model has 18 random effects and nearly 4,000 parameters!
 - Theory: Why use 18? Why not 8 or 12? Overfitting?
 - Computation: Expensive to fit the "deep" model (prohibitive for CV)
- Consider a spectrum of nine models:
 - Simple: ... + (1 | state) + (1|eth) + (1|age) + (1|inc)
 - Deep: (1 | inc) + (1 + z.inc | eth) + (1 + z.inc | stt) + (1 + z.inc | age) + + (1 | eth.inc) + (1 | eth.age) + (1 | inc.age) + (1 | stt.eth) + (1 | stt.inc) + (1 | stt.age) + (1 + z.inc | reg) + (1 | reg.eth) + (1 | reg.inc) + (1 | reg.age) + (1 | eth.inc.age) + (1 | stt.eth.inc) + (1 | stt.eth.age) + (1 | stt.inc.age)

- Explain turnout differentials by state/age/ethnicity/income
 - **But**: Only a few observations per cell → MRP!
 - Fit a multilevel regression on the survey and post-stratify
 - Key contribution: Add "deep" interactions
- Preferred model has 18 random effects and nearly 4,000 parameters!
 - Theory: Why use 18? Why not 8 or 12? Overfitting?
 - Computation: Expensive to fit the "deep" model (prohibitive for CV)
- Consider a spectrum of nine models:
 - Simple: ... + (1 | state) + (1|eth) + (1|age) + (1|inc)
 - Deep: (1 | inc) + (1 + z.inc | eth) + (1 + z.inc | stt) + (1 + z.inc | age) + + (1 | eth.inc) + (1 | eth.age) + (1 | inc.age) + (1 | stt.eth) + (1 | stt.inc) + (1 | stt.age) + (1 + z.inc | reg) + (1 | reg.eth) + (1 | reg.inc) + (1 | reg.age) + (1 | eth.inc.age) + (1 | stt.eth.inc) + (1 | stt.eth.age) + (1 | stt.inc.age)
 - Intermediate: (1 + z.inc | stt) + (1 + z.inc | eth) + (1 | inc) (1 + z.inc | age) + (1 | eth.inc) + (1 | eth.age) + (1 | inc.age) (1 | stt.eth) + (1 | stt.inc) + (1 | stt.age)

Outlining MAVB

- VB Variational Bayes
- MA Marginal Augmentation

- Model: Logistic (Binomial) Random Effects
 - J random effects (e.g. age, county, gender) each with d_i variables
 - p "fixed effects"

$$y_i \sim \mathrm{Binom}(n_i, p_i) \quad p_i = rac{\exp\left(\mathbf{x}_i^T eta + \sum_{j=1}^J \mathbf{z}_{i,j}^T oldsymbol{lpha}_{j,g[i]}
ight)}{1 + \exp\left(\mathbf{x}_i^T eta + \sum_{j=1}^J \mathbf{z}_{i,j}^T oldsymbol{lpha}_{j,g[i]}
ight)} \qquad rac{oldsymbol{lpha}_{j,g} \sim^{i.i.d.} \ \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}_j)}{\mathbf{\Sigma}_j \sim \mathrm{IW}(
u_j, \mathbf{\Phi}_j)}$$

- Model: Logistic (Binomial) Random Effects
 - J random effects (e.g. age, county, gender) each with d_i variables
 - p "fixed effects"

$$y_i \sim \mathrm{Binom}(n_i, p_i) \quad p_i = rac{\exp\left(\mathbf{x}_i^T eta + \sum_{j=1}^J \mathbf{z}_{i,j}^T oldsymbol{lpha}_{j,g[i]}
ight)}{1 + \exp\left(\mathbf{x}_i^T eta + \sum_{j=1}^J \mathbf{z}_{i,j}^T oldsymbol{lpha}_{j,g[i]}
ight)} \qquad rac{oldsymbol{lpha}_{j,g} \sim^{i.i.d.} N(\mathbf{0}, \mathbf{\Sigma}_j)}{\mathbf{\Sigma}_j \sim \mathrm{IW}(
u_j, \mathbf{\Phi}_j)}$$

ullet Goal: Approximate posterior of $oldsymbol{ heta}=eta,\{lpha_j\},\{oldsymbol{\Sigma}_j\}$

- Model: Logistic (Binomial) Random Effects
 - J random effects (e.g. age, county, gender) each with d_i variables
 - p "fixed effects"

$$y_i \sim \mathrm{Binom}(n_i, p_i) \quad p_i = rac{\exp\left(\mathbf{x}_i^T eta + \sum_{j=1}^J \mathbf{z}_{i,j}^T oldsymbol{lpha}_{j,g[i]}
ight)}{1 + \exp\left(\mathbf{x}_i^T eta + \sum_{j=1}^J \mathbf{z}_{i,j}^T oldsymbol{lpha}_{j,g[i]}
ight)} \qquad rac{oldsymbol{lpha}_{j,g} \sim^{i.i.d.} \ \mathcal{N}(\mathbf{0}, \mathbf{\Sigma}_j)}{\mathbf{\Sigma}_j \sim \mathrm{IW}(
u_j, \mathbf{\Phi}_j)}$$

- ullet Goal: Approximate posterior of $oldsymbol{ heta}=eta,\{oldsymbol{lpha}_j\},\{oldsymbol{\Sigma}_j\}$
- Mean-Field VB: Assume independence, $q(\beta)q(\{\alpha_j\})q(\{\Sigma_j\})$, and find best approximation to true posterior $p(\theta|\mathbf{y})$

- Model: Logistic (Binomial) Random Effects
 - J random effects (e.g. age, county, gender) each with d_i variables
 - p "fixed effects"

$$y_i \sim \operatorname{Binom}(n_i, p_i) \quad p_i = \frac{\exp\left(\mathbf{x}_i^T \boldsymbol{\beta} + \sum_{j=1}^J \mathbf{z}_{i,j}^T \boldsymbol{\alpha}_{j,g[i]}\right)}{1 + \exp\left(\mathbf{x}_i^T \boldsymbol{\beta} + \sum_{j=1}^J \mathbf{z}_{i,j}^T \boldsymbol{\alpha}_{j,g[i]}\right)} \qquad \frac{\boldsymbol{\alpha}_{j,g} \sim^{i.i.d.} N(\mathbf{0}, \boldsymbol{\Sigma}_j)}{\boldsymbol{\Sigma}_j \sim \operatorname{IW}(\nu_j, \boldsymbol{\Phi}_j)}$$

- ullet Goal: Approximate posterior of $oldsymbol{ heta}=oldsymbol{eta},\{oldsymbol{lpha}_j\},\{oldsymbol{\Sigma}_j\}$
- Mean-Field VB: Assume independence, $q(\beta)q(\{\alpha_j\})q(\{\Sigma_j\})$, and find best approximation to true posterior $p(\theta|\mathbf{y})$
 - As posed, no specialized algorithm for arbitrary J (see J=2 in Jeon, Rijmen, and Rabe-Hesketh 2017)
 - Requires evaluating many integrals

- Model: Logistic (Binomial) Random Effects
 - J random effects (e.g. age, county, gender) each with d_i variables
 - p "fixed effects"

$$y_i \sim \mathrm{Binom}(n_i, p_i)$$
 $p_i = \dfrac{\exp\left(\mathbf{x}_i^T \boldsymbol{\beta} + \sum_{j=1}^J \mathbf{z}_{i,j}^T \boldsymbol{\alpha}_{j,g[i]}\right)}{1 + \exp\left(\mathbf{x}_i^T \boldsymbol{\beta} + \sum_{j=1}^J \mathbf{z}_{i,j}^T \boldsymbol{\alpha}_{j,g[i]}\right)}$ $\boldsymbol{\alpha}_{j,g} \sim^{i.i.d.} N(\mathbf{0}, \boldsymbol{\Sigma}_j)$

- ullet Goal: Approximate posterior of $oldsymbol{ heta}=oldsymbol{eta},\{oldsymbol{lpha}_j\},\{oldsymbol{\Sigma}_j\}$
- Mean-Field VB: Assume independence, $q(\beta)q(\{\alpha_j\})q(\{\Sigma_j\})$, and find best approximation to true posterior $p(\theta|\mathbf{y})$
 - As posed, no specialized algorithm for arbitrary J (see J=2 in Jeon, Rijmen, and Rabe-Hesketh 2017)
 - Requires evaluating many integrals
- Solution: Augment posterior using Polya-Gammas (Polson, Scott, and Windle 2013)

- Model: Logistic (Binomial) Random Effects
 - J random effects (e.g. age, county, gender) each with d_i variables
 - p "fixed effects"

$$y_i \sim \mathrm{Binom}(n_i, p_i)$$
 $p_i = rac{\exp\left(\mathbf{x}_i^T \boldsymbol{eta} + \sum_{j=1}^J \mathbf{z}_{i,j}^T lpha_{j,g[i]}
ight)}{1 + \exp\left(\mathbf{x}_i^T \boldsymbol{eta} + \sum_{j=1}^J \mathbf{z}_{i,j}^T lpha_{j,g[i]}
ight)}$ $lpha_{j,g} \sim^{i.i.d.} N(\mathbf{0}, \Sigma_j)$

- ullet Goal: Approximate posterior of $oldsymbol{ heta}=oldsymbol{eta},\{oldsymbol{lpha}_j\},\{oldsymbol{\Sigma}_j\}$
- Mean-Field VB: Assume independence, $q(\beta)q(\{\alpha_j\})q(\{\Sigma_j\})$, and find best approximation to true posterior $p(\theta|\mathbf{y})$
 - As posed, no specialized algorithm for arbitrary J (see J = 2 in Jeon, Rijmen, and Rabe-Hesketh 2017)
 - Requires evaluating many integrals
- Solution: Augment posterior using Polya-Gammas (Polson, Scott, and Windle 2013)
 - Tractable mean-field for $p(\theta, \{\omega_i\} | \mathbf{y}, \mathbf{X}, \mathbf{Z})$
 - \bullet Easily scalable to arbitrary J, no integration required, simple updates
 - Different "strengths" of assumption to trade-off speed & accuracy

Dramatic success with speed √

- Dramatic success with speed √
- Point estimates are good √

- Dramatic success with speed √
- Point estimates are good √
 - Parameter blocks correlate highly with glmer (0.976) and STAN (0.977)

- Dramatic success with speed √
- Point estimates are good √
 - Parameter blocks correlate highly with glmer (0.976) and STAN (0.977)
- Issues with variance estimates for both glmer and VB

- Dramatic success with speed √
- Point estimates are good √
 - Parameter blocks correlate highly with glmer (0.976) and STAN (0.977)
- Issues with variance estimates for both glmer and VB
 - glmer: Some REs collapse to zero (no prior! Chung et al. 2015)
 - vglmer: Noticeably too small variance (well-known, general problem)

- Dramatic success with speed √
- Point estimates are good √
 - Parameter blocks correlate highly with glmer (0.976) and STAN (0.977)
- Issues with variance estimates for both glmer and VB
 - glmer: Some REs collapse to zero (no prior! Chung et al. 2015)
 - vglmer: Noticeably too small variance (well-known, general problem)
 - Median parameter block has

- Dramatic success with speed √
- Point estimates are good √
 - Parameter blocks correlate highly with glmer (0.976) and STAN (0.977)
- Issues with variance estimates for both glmer and VB
 - glmer: Some REs collapse to zero (no prior! Chung et al. 2015)
 - vglmer: Noticeably too small variance (well-known, general problem)
 - Median parameter block has
 - vglmer: 17% smaller standard deviation than HMC

- Dramatic success with speed √
- Point estimates are good √
 - Parameter blocks correlate highly with glmer (0.976) and STAN (0.977)
- Issues with variance estimates for both glmer and VB
 - glmer: Some REs collapse to zero (no prior! Chung et al. 2015)
 - vglmer: Noticeably too small variance (well-known, general problem)
 - Median parameter block has
 - vglmer: 17% smaller standard deviation than HMC
 - glmer: 36% smaller standard deviation than HMC

- Dramatic success with speed √
- Point estimates are good √
 - Parameter blocks correlate highly with glmer (0.976) and STAN (0.977)
- Issues with variance estimates for both glmer and VB
 - glmer: Some REs collapse to zero (no prior! Chung et al. 2015)
 - vglmer: Noticeably too small variance (well-known, general problem)
 - Median parameter block has
 - vglmer: 17% smaller standard deviation than HMC
 - glmer: 36% smaller standard deviation than HMC
- Simulations show a similar story:
 - All recover point estimates well
 - glmer has poor coverage for REs
 - vglmer undercovers somewhat
 - Alternative variational methods (ADVI) do very poorly

• **Second Goal of Paper:** Cheap way to improve initial approximation (although it still is an approximation!)

- Second Goal of Paper: Cheap way to improve initial approximation (although it still is an approximation!)
- Procedure:

- Second Goal of Paper: Cheap way to improve initial approximation (although it still is an approximation!)
- Procedure:
 - Find approximation using VB and draw m samples

- Second Goal of Paper: Cheap way to improve initial approximation (although it still is an approximation!)
- Procedure:
 - Find approximation using VB and draw *m* samples
 - Run m chains of MCMC for one step using some transition kernel k
 (e.g. marginal augmentation [MA], Gibbs, HMC, etc.)

- Second Goal of Paper: Cheap way to improve initial approximation (although it still is an approximation!)
- Procedure:
 - Find approximation using VB and draw m samples
 - Run m chains of MCMC for one step using some transition kernel k
 (e.g. marginal augmentation [MA], Gibbs, HMC, etc.)
 - Use new samples as approximation!

Marginal Augmentation to the Rescue!

- Second Goal of Paper: Cheap way to improve initial approximation (although it still is an approximation!)
- Procedure:
 - Find approximation using VB and draw *m* samples
 - Run m chains of MCMC for one step using some transition kernel k
 (e.g. marginal augmentation [MA], Gibbs, HMC, etc.)
 - Use new samples as approximation!
- Use MA because (i) simple & (ii) known to work well for MCMC on hierarchical models (Van Dyk and Meng 2001)

Marginal Augmentation to the Rescue!

- Second Goal of Paper: Cheap way to improve initial approximation (although it still is an approximation!)
- Procedure:
 - Find approximation using VB and draw *m* samples
 - Run m chains of MCMC for one step using some transition kernel k
 (e.g. marginal augmentation [MA], Gibbs, HMC, etc.)
 - Use new samples as approximation!
- Use MA because (i) simple & (ii) known to work well for MCMC on hierarchical models (Van Dyk and Meng 2001)
- Provides a guaranteed improvement (e.g. Ruiz and Titsias 2019)

Marginal Augmentation to the Rescue!

- **Second Goal of Paper:** Cheap way to improve initial approximation (although it still is an approximation!)
- Procedure:
 - Find approximation using VB and draw *m* samples
 - Run m chains of MCMC for one step using some transition kernel k
 (e.g. marginal augmentation [MA], Gibbs, HMC, etc.)
 - Use new samples as approximation!
- Use MA because (i) simple & (ii) known to work well for MCMC on hierarchical models (Van Dyk and Meng 2001)
- Provides a guaranteed improvement (e.g. Ruiz and Titsias 2019)
- Intuition: Running one step of MCMC makes approximation better
 → induces dependencies between parameters

• Ghitza and Gelman use J = 18; what about other choices?

- Ghitza and Gelman use J = 18; what about other choices?
- Use 10-fold cross-validation to compare 9 models

- Ghitza and Gelman use J = 18; what about other choices?
- Use 10-fold cross-validation to compare 9 models
 - Prohibitive for STAN or glmer

- Ghitza and Gelman use J = 18; what about other choices?
- Use 10-fold cross-validation to compare 9 models
 - Prohibitive for STAN or glmer
 - vglmer \rightarrow 20 minutes for all 9 models!

- Ghitza and Gelman use J = 18; what about other choices?
- Use 10-fold cross-validation to compare 9 models
 - Prohibitive for STAN or glmer
 - $vglmer \rightarrow 20$ minutes for all 9 models!
- Summary:
 - Adding demographic x state two-way interactions → big lift
 - Intermediate complexity (J=10) performs better than J=18

- Ghitza and Gelman use J = 18; what about other choices?
- Use 10-fold cross-validation to compare 9 models
 - Prohibitive for STAN or glmer
 - $vglmer \rightarrow 20$ minutes for all 9 models!
- Summary:
 - ullet Adding demographic ${\sf x}$ state two-way interactions o big lift
 - Intermediate complexity (J=10) performs better than J=18
- Improve models by some interactions, but don't go too deep!

• Hierarchical models are popular in political science

- Hierarchical models are popular in political science
- Estimation for non-linear outcomes is time-consuming—limiting model exploration & checking

- Hierarchical models are popular in political science
- Estimation for non-linear outcomes is time-consuming—limiting model exploration & checking
- Developed a new approximate algorithm (MAVB)
 - Can be used for binomial, (count, and multinomial outcomes)
 - Can include any number or type of (normal) random effects

- Hierarchical models are popular in political science
- Estimation for non-linear outcomes is time-consuming—limiting model exploration & checking
- Developed a new approximate algorithm (MAVB)
 - Can be used for binomial, (count, and multinomial outcomes)
 - Can include any number or type of (normal) random effects
- Considerable speed gains with limited cost in terms of accuracy

- Hierarchical models are popular in political science
- Estimation for non-linear outcomes is time-consuming—limiting model exploration & checking
- Developed a new approximate algorithm (MAVB)
 - Can be used for binomial, (count, and multinomial outcomes)
 - Can include any number or type of (normal) random effects
- Considerable speed gains with limited cost in terms of accuracy
- Can improve poor uncertainty estimates by simple "post-processing"

- Hierarchical models are popular in political science
- Estimation for non-linear outcomes is time-consuming—limiting model exploration & checking
- Developed a new approximate algorithm (MAVB)
 - Can be used for binomial, (count, and multinomial outcomes)
 - Can include any number or type of (normal) random effects
- Considerable speed gains with limited cost in terms of accuracy
- Can improve poor uncertainty estimates by simple "post-processing"
- Competitive with glmer in performance & much faster!

- Hierarchical models are popular in political science
- Estimation for non-linear outcomes is time-consuming—limiting model exploration & checking
- Developed a new approximate algorithm (MAVB)
 - Can be used for binomial, (count, and multinomial outcomes)
 - Can include any number or type of (normal) random effects
- Considerable speed gains with limited cost in terms of accuracy
- Can improve poor uncertainty estimates by simple "post-processing"
- Competitive with glmer in performance & much faster!
- On-Going Work: Looking for more papers & models to examine!

- Hierarchical models are popular in political science
- Estimation for non-linear outcomes is time-consuming—limiting model exploration & checking
- Developed a new approximate algorithm (MAVB)
 - Can be used for binomial, (count, and multinomial outcomes)
 - Can include any number or type of (normal) random effects
- Considerable speed gains with limited cost in terms of accuracy
- Can improve poor uncertainty estimates by simple "post-processing"
- Competitive with glmer in performance & much faster!
- On-Going Work: Looking for more papers & models to examine!
 - github.com/mgoplerud/vglmer \rightarrow j.mp/goplerud_MAVB

mgoplerud.com

mgoplerud@pitt.edu

References I

- Chung, Yeojin, Andrew Gelman, Sophia Rabe-Hesketh, Jingchen Liu, and Vincent Dorie. 2015. "Weakly Informative Prior for Point Estimation of Covariance Matrices in Hierarchical Models." *Journal of Educational and Behavioral Statistics* 40 (2): 136–157.
- Ghitza, Yair, and Andrew Gelman. 2013. "Deep Interactions with MRP: Election Turnout and Voting Patterns Among Small Electoral Subgroups." *American Journal of Political Science* 57 (3): 762–776.
- Jeon, Minjeong, Frank Rijmen, and Sophia Rabe-Hesketh. 2017. "A Variational Maximization–Maximization Algorithm for Generalized Linear Mixed Models with Crossed Random Effects." *Psychometrika* 82 (3): 693–716.
- Polson, Nicholas G., James G. Scott, and Jesse Windle. 2013. "Bayesian Inference for Logistic Models Using Pólya–Gamma Latent Variables." Journal of the American Statistical Association 108 (504): 1339–1349.

References II

Ruiz, Francisco J.R., and Michalis K. Titsias. 2019. "A Contrastive Divergence for Combining Variational Inference and MCMC." In *International Conference on Machine Learning*. http://proceedings.mlr.press/v97/ruiz19a/ruiz19a.pdf.

Van Dyk, David A., and Xiao-Li Meng. 2001. "The Art of Data Augmentation." *Journal of Computational and Graphical Statistics* 10 (1): 1–50.