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Political Scientists Study Complicated Data

® Data in political science is messy

® Correlated across observations (voters within constituencies)

® Nested observations (respondents in clusters in countries)

® Effects vary across space and time (effect of income over time)

® Non-linear outcomes (binary, count, multinomial)
e Standard models (“i.i.d."; linear outcomes) are often unsuitable
® What to do? Hierarchical models, random effects, mixed effects,

multilevel models, ...

® Popular in political science and use is going 171
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Inference is tough:

® Often requires evaluating many, intractable, integrals
® Even worse when effects are “non-nested” (e.g. time + country)

Estimation is thus usually rather slow

® Usually need to fit many models for hypothesis testing, robustness
tests, model comparison, cross-validation...

For applied researchers, hierarchical models can be a pain to use.

Motivation: Can we estimate these models differently, gain speed,
and maintain accuracy?
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Uncertainty

® Goal for Today: Keep speed but maintain quality

® Marginally Augmented Variational Bayes

® Variational Bayes: New application of data augmentation to
(non-linear) hierarchical models (Polson, Scott, and Windle 2013)
® Marginally Augmented: Post-processing step to improve uncertainty

® Focus on logistic hierarchical models in paper

® R package includes count and (soon!) multinomial and linear
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Overview of Presentation

® Motivating Example: Deep MRP (Ghitza and Gelman 2013)
® Qutlining MAVB

® Advice for MRP Practitioners: How Deep is Deep Enough?

Max Goplerud (University of Pittsburgh) MAVB PolMeth 2020 4/13



Motivating Example: Ghitza and Gelman (2013)

® Explain turnout differentials by state/age/ethnicity/income

Max Goplerud (University of Pittsburgh) MAVB PolMeth 2020 5/13



Motivating Example: Ghitza and Gelman (2013)

® Explain turnout differentials by state/age/ethnicity/income
® But: Only a few observations per cell - MRP!

Max Goplerud (University of Pittsburgh) MAVB PolMeth 2020 5/13



Motivating Example: Ghitza and Gelman (201

® Explain turnout differentials by state/age/ethnicity/income

® But: Only a few observations per cell - MRP!
® Fit a multilevel regression on the survey and post-stratify

Max Goplerud (University of Pittsburgh) MAVB PolMeth 2020 5/13



Motivating Example: Ghitza and Gelman (2013)

e Explain turnout differentials by state/age/ethnicity/income

® But: Only a few observations per cell - MRP!
® Fit a multilevel regression on the survey and post-stratify
® Key contribution: Add “deep” interactions

Max Goplerud (University of Pittsburgh) MAVB PolMeth 2020 5/13



Motivating Example: Ghitza and Gelman (2013)

e Explain turnout differentials by state/age/ethnicity/income

® But: Only a few observations per cell - MRP!
® Fit a multilevel regression on the survey and post-stratify
® Key contribution: Add “deep” interactions

e Preferred model has 18 random effects and nearly 4,000 parameters!

Max Goplerud (University of Pittsburgh) MAVB PolMeth 2020 5/13



Motivating Example: Ghitza and Gelman (2013)

e Explain turnout differentials by state/age/ethnicity/income

® But: Only a few observations per cell - MRP!
® Fit a multilevel regression on the survey and post-stratify
® Key contribution: Add “deep” interactions

e Preferred model has 18 random effects and nearly 4,000 parameters!
® Theory: Why use 187 Why not 47?7

Max Goplerud (University of Pittsburgh) MAVB PolMeth 2020 5/13



Motivating Example: Ghitza and Gelman (2013)

e Explain turnout differentials by state/age/ethnicity/income

® But: Only a few observations per cell - MRP!
® Fit a multilevel regression on the survey and post-stratify
® Key contribution: Add “deep” interactions

e Preferred model has 18 random effects and nearly 4,000 parameters!
® Theory: Why use 187 Why not 8 or 127

Max Goplerud (University of Pittsburgh) MAVB PolMeth 2020 5/13



Motivating Example: Ghitza and Gelman (2013)

e Explain turnout differentials by state/age/ethnicity/income

® But: Only a few observations per cell - MRP!
® Fit a multilevel regression on the survey and post-stratify
® Key contribution: Add “deep” interactions

e Preferred model has 18 random effects and nearly 4,000 parameters!
® Theory: Why use 18?7 Why not 8 or 127 Overfitting?

Max Goplerud (University of Pittsburgh) MAVB PolMeth 2020 5/13



Motivating Example: Ghitza and Gelman (2013)

e Explain turnout differentials by state/age/ethnicity/income

® But: Only a few observations per cell - MRP!
® Fit a multilevel regression on the survey and post-stratify
® Key contribution: Add “deep” interactions

e Preferred model has 18 random effects and nearly 4,000 parameters!

® Theory: Why use 18?7 Why not 8 or 127 Overfitting?
® Computation: Expensive to fit the “deep” model (prohibitive for CV)

Max Goplerud (University of Pittsburgh) MAVB PolMeth 2020 5/13



Motivating Example: Ghitza and Gelman (2013)

e Explain turnout differentials by state/age/ethnicity/income

® But: Only a few observations per cell - MRP!
® Fit a multilevel regression on the survey and post-stratify
® Key contribution: Add “deep” interactions

e Preferred model has 18 random effects and nearly 4,000 parameters!

® Theory: Why use 18?7 Why not 8 or 127 Overfitting?
® Computation: Expensive to fit the “deep” model (prohibitive for CV)

® Consider a spectrum of nine models:

Max Goplerud (University of Pittsburgh) MAVB PolMeth 2020 5/13



Motivating Example: Ghitza and Gelman (20

e Explain turnout differentials by state/age/ethnicity/income
® But: Only a few observations per cell - MRP!

® Fit a multilevel regression on the survey and post-stratify
® Key contribution: Add “deep” interactions

e Preferred model has 18 random effects and nearly 4,000 parameters!
® Theory: Why use 18?7 Why not 8 or 127 Overfitting?
® Computation: Expensive to fit the “deep” model (prohibitive for CV)

® Consider a spectrum of nine models:

® Simple: ... + (1 | state) + (1leth) + (1]lage) + (1linc)

L4 Deep: (1 | inc) + (1 + z.inc | eth) + (1 + z.inc | stt) + (1 + z.inc | age) +

+ (1] eth.inc) + (1 | eth.age) + (1 | inc.age) + (1 | stt.eth) + (1 | stt.inc) + (1 | stt.age) +
(1 + z.inc | reg) + (1 | reg.eth) + (1 | reg.inc) + (1 | reg.age) + (1 | eth.inc.age) +
(1 | stt.eth.inc) + (1 | stt.eth.age) + (1 | stt.inc.age)

Max Goplerud (University of Pittsburgh) MAVB PolMeth 2020 5/13



Motivating Example: Ghitza and Gelman (20

e Explain turnout differentials by state/age/ethnicity/income

® But: Only a few observations per cell - MRP!
® Fit a multilevel regression on the survey and post-stratify
® Key contribution: Add “deep” interactions

e Preferred model has 18 random effects and nearly 4,000 parameters!
® Theory: Why use 18?7 Why not 8 or 127 Overfitting?
® Computation: Expensive to fit the “deep” model (prohibitive for CV)

® Consider a spectrum of nine models:
® Simple: ... + (1 | state) + (1leth) + (1]lage) + (1linc)
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Outlining MAVB

® VB - Variational Bayes
® MA - Marginal Augmentation
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® Goal: Approximate posterior of 8 = 3, {a;},{%;}
® Mean-Field VB: Assume independence, q(8)q({c;})q({%;}). and
find best approximation to true posterior p(6|y)
® As posed, no specialized algorithm for arbitrary J
(see J = 2 in Jeon, Rijmen, and Rabe-Hesketh 2017)
® Requires evaluating many integrals

e Solution: Augment posterior using Polya-Gammas (Polson, Scott, and
Windle 2013)
® Tractable mean-field for p(0, {w;}|y, X, Z)
® Easily scalable to arbitrary J, no integration required, simple updates
® Different “strengths” of assumption to trade-off speed & accuracy
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Application: Dramatic Gains in Speed
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® Dramatic success with speed v
® Point estimates are good v’

® Parameter blocks correlate highly with glmer (0.976) and STAN (0.977)
® |ssues with variance estimates for both glmer and VB

® glmer: Some REs collapse to zero (no prior! Chung et al. 2015)
® vglmer: Noticeably too small variance (well-known, general problem)
® Median parameter block has

® vglmer: 17% smaller standard deviation than HMC

® glmer: 36% smaller standard deviation than HMC

® Simulations show a similar story:
® All recover point estimates well
glmer has poor coverage for REs
vglmer undercovers somewhat
Alternative variational methods (ADVI) do very poorly
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Marginal Augmentation to the Rescue!

Second Goal of Paper: Cheap way to improve initial approximation
(although it still is an approximation!)

Procedure:

® Find approximation using VB and draw m samples

® Run m chains of MCMC for one step using some transition kernel k
(e.g. marginal augmentation [MA], Gibbs, HMC, etc.)

® Use new samples as approximation!

Use MA because (i) simple & (ii) known to work well for MCMC on
hierarchical models (Van Dyk and Meng 2001)

Provides a guaranteed improvement (e.g. Ruiz and Titsias 2019)

Intuition: Running one step of MCMC makes approximation better
— induces dependencies between parameters
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Advice for MRP Practitioners

Ghitza and Gelman use J = 18; what about other choices?

Use 10-fold cross-validation to compare 9 models

® Prohibitive for STAN or glmer
® vglmer — 20 minutes for all 9 models!

e Summary:

® Adding demographic x state two-way interactions — big lift
® Intermediate complexity (J = 10) performs better than J = 18

® Improve models by some interactions, but don’'t go too deep!
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